By Topic

Detection of H -Phase Signals From Hydroacoustic Data Using Quadratic Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilmut, M.J. ; Sch. of Earth & Ocean Sci., Univ. of Victoria, Victoria, BC, Canada ; Chapman, N.R. ; Prior, M.

The Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates a network of underwater hydrophones as part of the International Monitoring System (IMS). Data from this network are processed at the International Data Centre (IDC), Vienna, Austria. One of the objectives is to identify the signals that are due to an underwater explosion, the so-called H-phase signals. Data provided by IDC were examined to investigate new automated processing schemes that could significantly reduce the number of signals needed to be analyzed by human experts, while still detecting with high probability the rare H-phase signals. A variant of quadratic classification (QC) using four signal characteristics from the time, frequency, and cepstrum domains was applied to the problem. It was found that 97.5% of the received H-phase signals are detected by the automated QC process. These H-phase signals are among only about 1% of the signals which are allowed to form event solutions for further analysis by experienced experts.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:35 ,  Issue: 3 )