By Topic

GaAs and InAs Nanowires for Ballistic Transport

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shtrikman, H. ; Braun Center for Submicron Res., Weizmann Inst. of Sci., Rehovot, Israel ; Popovitz-Biro, R. ; Kretinin, Andrey V. ; Kacman, P.

Tailoring of GaAs and InAs nanowires (NWs) to be suited for measurements of ballistic transport is discussed in this paper. Methods used to avoid imperfections most harmful for the transport properties are described. We consider the imperfections, which frequently occur in III-V NWs: occasional stacking faults, unintentional impurities (like gold atoms originating from the catalyst in the vapor-liquid-solid growth method) and imperfections associated with the NW side facets. Foremost important is obtaining GaAs and InAs NWs, in which either a pure wurtzite or pure zinc-blende structure is enforced, i.e., overcoming the inherent tendency of the two structures to intermix in III-V NWs. Next follows elimination, or at least minimization of the number of incorporated impurities. In InAs NWs, this has been achieved by using low-growth temperature combined with a low-growth rate. Finally, embedding the NWs in an in situ grown shell has provided a robust way for passivation of the surface states and keeping the electrons away from any impurities adhered to the surface.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:17 ,  Issue: 4 )