By Topic

Spatio-temporal soil moisture measurement with wireless underground sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xin Dong ; Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588 ; Mehmet C. Vuran

In this paper, the estimation distortion of distributed soil moisture measurement using Wireless Underground Sensor Networks (WUSNs) is investigated. The main focus of this paper is to analyze the impact of the environment and network parameters on the estimation distortion of the soil moisture. More specifically, the effects of rainfall, soil porosity, and vegetation root zone are investigated by exploiting a rainfall model, in addition to the effects of sampling rate, network topology, and measurement signal noise ratio. Spatio-temporal correlation is characterized to develop a measurement distortion model with respect to these factors. The evaluations reveal that with porous soil and shallow vegetation roots, high sampling rate is required for sufficient accuracy. In addition, the impact of rainfall on the estimation distortion has also been investigated. In a storm, which carries on a large area and lasts for a long time, the estimation distortion is decreased because of the increase in spatial correlation. Moreover, only few closest sensors are needed to estimate the values of an interested location. These findings are utilized to guide the design of WUSNs for soil moisture measurement to reduce the density of network and the sampling rate of the sensors but at the same time maintain the performance of the system. Moreover, guidelines for designing WUSNs for soil moisture measurement are provided. To the best of our knowledge, this is the first work that establishes tight relations between environmental effects and distributed measurement in WUSNs.

Published in:

Ad Hoc Networking Workshop (Med-Hoc-Net), 2010 The 9th IFIP Annual Mediterranean

Date of Conference:

23-25 June 2010