By Topic

Finite difference analysis of 2-D photonic crystals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yang, H.Y.D. ; Dept. of Electr. Eng. & Comput. Sci., Illinois Univ., Chicago, IL, USA

In this paper, a finite difference method is developed to analyze the guided-wave properties of a class of two-dimensional photonic crystals (irregular dielectric rods). An efficient numerical scheme is developed to deal with the deterministic equations resulting from a set of finite difference equations for inhomogeneous periodic structures. Photonic band structures within an irreducible Brillouin zone are investigated for both in-plane and out-of-plane propagation. For out-of-plane propagation, the guided waves are hybrid modes; while for in-plane propagation, the guided waves are either TE or TM modes, and there exist photonic bandgaps within which wave propagation is prohibited. Photonic bandgap maps for squares, veins, and crosses are investigated to determine the effects of the filling factor, the dielectric contrast, and lattice constants, on the band-gap width and location. Possible applications of photonic bandgap materials are discussed

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:44 ,  Issue: 12 )