By Topic

Adaptive multicore scheduling for the LTE uplink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pelcat, M. ; IETR, UEB, Rennes, France ; Nezan, J.-F. ; Aridhi, S.

The Long Term Evolution (LTE) is the next generation cellular system of 3GPP, where every subframe (1 millisecond duration), a base station receives information from up to one hundred users. Multicore heterogeneous embedded systems with Digital Signal Processors (DSP) and coprocessors are power efficient solutions which decode the LTE uplink signals and encode the downlink LTE signals in base stations. The LTE Physical Uplink Shared Channel (PUSCH) uses a dynamic algorithm, as its multicore scheduling must be adapted every subframe to the number of transmitting users and to the data rate of the services they require. To solve this particular issue of the dynamic deployment while maintaining low latency, one approach is to find efficient on-the-fly solutions using techniques such as graph generation and scheduling. This approach is opposed to a fully static scheduling of predefined cases, approach currently used in the UMTS deployments. We show that the fully static approach is not suitable for the LTE PUSCH and that present DSP cores are powerful enough to recompute an efficient adaptive schedule for the application most complex cases in real-time.

Published in:

Adaptive Hardware and Systems (AHS), 2010 NASA/ESA Conference on

Date of Conference:

15-18 June 2010