By Topic

Simulation of dispersive multiconductor transmission lines by Pade approximation via the Lanczos process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Celik, M. ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; Cangellaris, A.C.

A mathematical model for dispersive, multiconductor transmission lines is introduced that makes possible the utilization of the Pade approximation via the Lanczos (PVL) process to the analysis of linear networks that contain transmission line systems. The mathematical model is based on the use of Chebyshev polynomials for the representation of the spatial variation of the transmission-line voltages and currents. A simple collocation procedure is used to obtain a matrix representation of the transmission line equations with matrix coefficients that are first order polynomials in the Laplace-transform variable s and in which terminal transmission-line voltages and currents appear explicitly. Thus, the model is compatible with both the PVL algorithm and the modified nodal analysis formalism. Results from the numerical simulation of both digital interconnect-type and microwave circuits are presented to demonstrate the validity and discuss the efficiency of the proposed model

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:44 ,  Issue: 12 )