By Topic

Multimodal Physical Activity Recognition by Fusing Temporal and Cepstral Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ming Li ; Viterbi Sch. of Eng., Univ. of Southern California, Los Angeles, CA, USA ; Rozgić, V. ; Thatte, G. ; Sangwon Lee
more authors

A physical activity (PA) recognition algorithm for a wearable wireless sensor network using both ambulatory electrocardiogram (ECG) and accelerometer signals is proposed. First, in the time domain, the cardiac activity mean and the motion artifact noise of the ECG signal are modeled by a Hermite polynomial expansion and principal component analysis, respectively. A set of time domain accelerometer features is also extracted. A support vector machine (SVM) is employed for supervised classification using these time domain features. Second, motivated by their potential for handling convolutional noise, cepstral features extracted from ECG and accelerometer signals based on a frame level analysis are modeled using Gaussian mixture models (GMMs). Third, to reduce the dimension of the tri-axial accelerometer cepstral features which are concatenated and fused at the feature level, heteroscedastic linear discriminant analysis is performed. Finally, to improve the overall recognition performance, fusion of the multimodal (ECG and accelerometer) and multidomain (time domain SVM and cepstral domain GMM) subsystems at the score level is performed. The classification accuracy ranges from 79.3% to 97.3% for various testing scenarios and outperforms the state-of-the-art single accelerometer based PA recognition system by over 24% relative error reduction on our nine-category PA database.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 4 )