Cart (Loading....) | Create Account
Close category search window
 

A Methodology for Combined Modeling of Skin, Proximity, Edge, and Surface Roughness Effects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Curran, B. ; Fraunhofer Inst. for Reliability & Microintegration (IZM), Berlin, Germany ; Ndip, I. ; Guttowski, S. ; Reichl, H.

A methodology is introduced for modeling resistive losses in planar transmission lines that support the transverse electromagnetic mode. The methodology aims to accurately and systematically account for these losses by modeling the skin, proximity, edge, and surface roughness effects in a combined way. The results show a correlation with three measurements within 5%, and offer insight into the different sources of resistive losses at high frequencies. Considering a printed coplanar line as an example, approximately 8% of the resistive loss come from surface roughness, and 30% from the edge effects at 60 GHz. However, for a line with a higher conductivity metallization, this increases to 38% and 30%, respectively, from surface roughness and edge effects at only 20 GHz.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.