Cart (Loading....) | Create Account
Close category search window
 

Using Discrete Probabilities With Bhattacharyya Measure for SVM-Based Speaker Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kong Aik Lee ; Inst. for Infocomm Res., Agency for Sci., Technol. & Res. (A*STAR), Singapore, Singapore ; Chang Huai You ; Haizhou Li ; Kinnunen, T.
more authors

Support vector machines (SVMs), and kernel classifiers in general, rely on the kernel functions to measure the pairwise similarity between inputs. This paper advocates the use of discrete representation of speech signals in terms of the probabilities of discrete events as feature for speaker verification and proposes the use of Bhattacharyya coefficient as the similarity measure for this type of inputs to SVM. We analyze the effectiveness of the Bhattacharyya measure from the perspective of feature normalization and distribution warping in the SVM feature space. Experiments conducted on the NIST 2006 speaker verification task indicate that the Bhattacharyya measure outperforms the Fisher kernel, term frequency log-likelihood ratio (TFLLR) scaling, and rank normalization reported earlier in literature. Moreover, the Bhattacharyya measure is computed using a data-independent square-root operation instead of data-driven normalization, which simplifies the implementation. The effectiveness of the Bhattacharyya measure becomes more apparent when channel compensation is applied at the model and score levels. The performance of the proposed method is close to that of the popular GMM supervector with a small margin.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 4 )
Biometrics Compendium, IEEE

Date of Publication:

May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.