By Topic

Improved heat sinking for laser-diode arrays using microchannels in CVD diamond

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This work proposes a novel cooling system for high-power laser-diode arrays, for which the maximum optical output power density per unit surface area is limited by the temperature rise due to self-heating. The proposed system uses a microchannel heat sink made of chemical-vapor-deposited (CVD) diamond, whose high thermal conductivity increases the efficiency of the channel-wall fins and reduces the array-to-coolant thermal resistance using a simple model for the combined conduction and convection problem. The resistance is calculated to be 75% less than that for a conventional configuration using a silicon microchannel heat sink. The present analysis strongly motivates a future experimental study

Published in:

Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on  (Volume:20 ,  Issue: 1 )