By Topic

Impact of Sea Clutter Nonstationarity on Disturbance Covariance Matrix Estimation and CFAR Detector Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Greco, M. ; Dept. of Ing. dell''Inf., Univ. of Pisa, Pisa, Italy ; Stinco, P. ; Gini, F. ; Rangaswamy, M.

Adaptive detection of signals embedded in non-Gaussian clutter is an important challenge for radar engineers. We present an analysis of sea clutter nonstationarity with respect to clutter covariance matrix estimation and its impact on the constant false alarm rate (CFAR) property of the normalized adaptive matched filter (NAMF). Three covariance matrix estimators, e.g., the sample covariance matrix (SCM), the normalized sample covariance matrix (NSCM), and the approximate maximum likelihood (AML) estimators, have been investigated. The impact of nonstationarity, which emerges in the statistical analysis of the clutter data, is measured in terms of probability of false alarm and probability of detection. Performance analysis is presented using both simulated data and measured sea clutter data recorded by two different X-band radars, namely, the Fynmeet radar and the IPIX radar.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:46 ,  Issue: 3 )