By Topic

Frequency-Domain Bistatic SAR Processing for Spaceborne/Airborne Configuration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Wang, R. ; Univ. of Siegen, Siegen, Germany ; Loffeld, O. ; Nies, H. ; Knedlik, S.
more authors

This paper focuses on the bistatic synthetic aperture radar (BiSAR) signal processing in the spaceborne/airborne configuration. Due to the extreme differences in platform velocities and slant ranges, the airborne system operates in the inverse sliding spotlight mode, while the spaceborne system works in the sliding spotlight mode to achieve a tradeoff between the azimuth scene size and azimuth resolution. Such a mode is generally called double sliding spotlight mode. In this configuration, the echoed signal has two characteristics. Firstly, both transmitter and receiver have very short synthetic aperture times. Secondly, the airborne platform operates with wide squint difference, while the spaceborne platform works in the small squint case. According to these two features, we use different Taylor expansions to address the slant range histories of transmitter and receiver. Based on the presented model, a two-dimensional space-variant bistatic point target reference spectrum (BPTRS) is derived. Furthermore, we linearize the BPTRS to derive the transfer function of the baseband scene. From the transfer function, the signal features of the spaceborne/airborne configuration become very clear. Using the transfer function, the two-dimensional inverse scaled Fourier transform (ISFT) is used to focus the bistatic signal in the spaceborne/airborne configuration.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:46 ,  Issue: 3 )