By Topic

A method for design of a hybrid neuro-fuzzy control system based on behavior modeling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wei Li ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China

It is known that control signals from a fuzzy logic controller are determined by a response behavior of a controlled object rather than its analytical models. That implies that the fuzzy controller could yield a similar control result for a set of plants with a similar dynamic behavior. This idea lends to modeling of a plant with unknown structure by defining several types of dynamic behaviors. On the basis of dynamic behavior classification, a new method is presented for the design of a neuro-fuzzy control system in two steps: 1) we model a plant with unknown structure by choosing a set of simplified systems with equivalent behavior as “templates” to optimize their fuzzy controllers off-line; and 2) we use an algorithm for system identification to perceive dynamic behavior and a neural network to adapt fuzzy logic controllers by matching the “templates” online. The main advantage of this method is that convergence problem can be avoided during adaptation process. Finally, the proposed method is used to design neuro-fuzzy controllers for a two-link manipulator

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:5 ,  Issue: 1 )