By Topic

Subsystem inference representation for fuzzy systems based upon product-sum-gravity rule

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Y. Yam ; Dept. of Mech. & Autom. Eng., Chinese Univ. of Hong Kong, Shatin, Hong Kong

A new representation which expresses a product-sum-gravity (PSG) inference in terms of additive and multiplicative subsystem inferences of single variable is proposed. The representation yields additional insight into the structure of a fuzzy system and produces an approximate functional characterization of its inferred output. The form of the approximating function is dictated by the choice or polynomial, sinusoidal, or other designs of subsystem inferences. With polynomial inferences, the inferred output approximates a polynomial function the order of which is dependent on the numbers of input membership functions. Explicit expressions for the function and corresponding error of approximation are readily obtained for analysis. Subsystem inferences emulating sinusoidal functions are also discussed. With proper scaling, they produce a set of orthonormal subsystem inferences. The orthonormal set points to a possible “modal” analysis of fuzzy inference and yields solution to an additive decomposable approximation problem. This work also shows that, as the numbers of input membership functions become large, a fuzzy system with PSG inference would converge toward polynomial or Fourier series expansions. The result suggests a new framework to consider fuzzy systems as universal approximators

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:5 ,  Issue: 1 )