Cart (Loading....) | Create Account
Close category search window
 

VLSI architectures for lattice structure based orthonormal discrete wavelet transforms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Denk, T.C. ; Dept. of Electr. Eng., Minnesota Univ., Minneapolis, MN, USA ; Parhi, K.K.

We present efficient single-rate architectures for the one-dimensional orthonormal discrete wavelet transform (DWT). In the paper we make two contributions. First, we show that architectures that are based on the quadrature mirror filter (QMF) lattice structure require approximately half the number of multipliers and adders than corresponding direct-form structures. Second, we present techniques for mapping the 1-D orthonormal DWT to folded and digit-serial architectures which are based on the QMF lattice structure. For folded architectures, we discuss two techniques for mapping the QMF lattice structure to hardware. For digit-serial architectures, we show that any two-channel subband system can be implemented using digit-serial processing techniques by utilizing the polyphase decomposition. Using this result, we describe an orthonormal DWT architecture which uses the QMF lattice structure and digit-serial processing techniques. The proposed folded and digit-serial QMF lattice structures are attractive choices for implementations of the orthonormal DWT which require low area and low power dissipation

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:44 ,  Issue: 2 )

Date of Publication:

Feb 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.