By Topic

A video coding algorithm using vector-based techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Weiping Li ; Dept. of Comput. Sci. & Electr. Eng., Lehigh Univ., Bethlehem, PA, USA ; H. Q. Cao ; Shipeng Li ; Fan Ling
more authors

This paper presents an algorithm proposal submitted to MPEG-4 for video coding. The proposed algorithm addresses the functionality of improved coding efficiency for compression. It uses vector-based techniques for coding intraframes (the first frame and subsequent refreshing key frames) and motion-compensated difference frames. It uses the same motion estimation and motion compensation techniques as H.263. A video frame (I or P frame) is first decomposed into a set of vector bands using a vector wavelet transform. This stage of vector-based signal processing makes subsequent vector quantization in the vector bands very efficient. Lattice vector quantization is then used in the vector bands. A 100% labeling efficiency is achieved for lattice vector quantization by using a set of generalized labeling algorithms for various important lattices with pyramid and sphere boundaries. Finally, entropy coding is used to code the indexes generated from lattice vector quantization. Our coding results have shown that a gain in peak signal-to-noise ratio (PSNR) up to 8 dB for intraframe coding and up to 6 dB for interframe coding can be achieved over H.263. Subjective quality improvement of the proposed algorithm over H.263 can be easily observed

Published in:

IEEE Transactions on Circuits and Systems for Video Technology  (Volume:7 ,  Issue: 1 )