By Topic

Contextual smoothing of image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jonathan Letham ; Heriot-Watt University, Edinburgh, UK ; Neil M. Robertson ; Barry Connor

This paper presents a new method for improving region segmentation in sequences of images when temporal and spatial prior context is available. The proposed technique uses elementary classifiers on infra-red, polarimetic and video data to obtain a coarse segmentation per-pixel. Contextual information is exploited in a Bayesian formulation to smooth the segmentation between frames. This is a general framework and significantly enhances segmentation from the classifiers alone. The method is demonstrated by classifying images of a rural scene into 3 positive classes: sky, vegetation and road, and one class of all other unlabelled data. Priors for the probabilistic smoothing in this scene are learned from ground-truth images. It is shown that an overall improvement of around 10% is achieved. Individual classes are improved by up to 30%.

Published in:

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops

Date of Conference:

13-18 June 2010