By Topic

Generative modeling of spatio-temporal traffic sign trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Brkić, K. ; Fac. of El. Eng. & Comput., Zagreb, Croatia ; Šegvić, S. ; Kalafatić, Z. ; Sikirić, I.
more authors

We consider the task of automatic detection and recognition of traffic signs in video. We show that successful off-the-shelf detection (Viola-Jones) and classification (SVM) systems yield unsatisfactory results. Our main concern are high false positive detection rates which occur due to sparseness of the traffic signs in videos. We address the problem by enforcing spatio-temporal consistency of the detections corresponding to a distinct sign in video. We also propose a generative model of the traffic sign motion in the image plane, which is obtained by clustering the trajectories filtered by an appropriate procedure. The contextual information recovered by the proposed model will be employed in our future research on recognizing traffic signs in video.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010