By Topic

Context-driven clustering by multi-class classification in an active learning framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Godec, M. ; Inst. for Comput. Graphics & Vision, Graz Univ. of Technol., Graz, Austria ; Sternig, S. ; Roth, P.M. ; Bischof, H.

Tracking and detection of objects often require to apply complex models to cope with the large intra-class variability of the foreground as well as the background class. In this work, we reduce the complexity of a binary classification problem by a context-driven approach. The main idea is to use a hidden multi-class representation to capture multi-modalities in the data finally providing a binary classifier. We introduce virtual classes generated by a context-driven clustering, which are updated using an active learning strategy. By further using an on-line learner the classifier can easily be adapted to changing environmental conditions. Moreover, by adding additional virtual classes more complex scenarios can be handled. We demonstrate the approach for tracking as well as detection on different scenarios reaching state-of-the-art results.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010