By Topic

Stochastic amplitude fluctuation in coherent OTDR and a new technique for its reduction by stimulating synchronous optical frequency hopping

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
H. Izumita ; NTT Access Network Syst. Labs., Ibaraki, Japan ; Y. Koyamada ; S. Furukawa ; I. Sankawa

The dynamic range of optical time-domain reflectometry (OTDR) can be extended by employing self-heterodyne coherent detection. However, with coherent detection OTDR (C-OTDR) there is a problem of amplitude fluctuation in the C-OTDR trace caused by (1) the fading noise resulting from the interference between the Rayleigh backscattered lights, (2) the polarization dependent fluctuation of the optical detection efficiency, and (3) the heterodyne detection efficiency fluctuation due to the relative phase change between the Rayleigh backscattered signals and the local oscillator (LO). This paper provides a stochastic description of the amplitude fluctuation using probability density functions and the calculated amplitude fluctuation with M integrations when reduction techniques are applied. We have found theoretically that it is difficult to reduce the amplitude fluctuation effectively by the optical frequency domain integration technique using the asynchronous optical frequency hopping of the source. This is because of an inclination increase in the C-OTDR trace which reduces the measurement accuracy. We propose a synchronous optical frequency hopping technique in which an RF current pulse is induced in the drive current of the laser diode (LD) during the LD temperature change. This effectively reduces the amplitude fluctuation without any increase in the inclination. The amplitude fluctuation for a 1 μs pulse width is reduced experimentally to 1/7 that with the LD temperature stabilized. For 100 and 30 ns pulse widths, it is reduced to 1/11 of that with the LD temperature stabilized. These experimental results are in good agreement with the calculated ones

Published in:

Journal of Lightwave Technology  (Volume:15 ,  Issue: 2 )