By Topic

Concealed object detection and segmentation over millimetric waves images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Martínez, O. ; CMTech Group, Univ. Pompeu Fabra, Barcelona, Spain ; Ferraz, L. ; Binefa, X. ; Gómez, I.
more authors

Millimetric Waves Images (MMW) are becoming more and more useful in the passive detection of threaten objects based on plastic substances as explosives or sharp/cutting weapons. Our goal is to achieve segmentation of the body and concealed threats dealing with the inherent problems of this type of images: noise, low resolution and intensity inhomogeneity. In this work we present the results of applying Iterative Steering Kernel Regression (ISKR) method for denoising and Local Binary Fitting (LBF) for segmentation in order to correctly segment bodies and threats over a database of 29 MMW images. These methods, which had not been tested in the literature with these type of images, are compared with previously applied state of the art methods. Experimental results show that the use of the proposed methods in MMW images improve the results that had been obtained before.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010