By Topic

Video-based localization without 3D mapping for the visually impaired

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liu, J.J. ; GRASP Lab., Univ. of Pennsylvania, Philadelphia, PA, USA ; Phillips, C. ; Daniilidis, K.

In this paper, we present a system for indoor human localization that does not need 3D reconstruction of features or landmarks. We assume that a video sequence has been acquired and that keyframes have been registered with respect to 2D positions and orientations. In online mode, we use only a handheld monochrome fisheye camera and a synchronized IMU as sensory inputs. The query is not based on a single image but uses a HMM-based state estimator. Our image representation consists of initial global GIST vectors followed by local SURF features. We present a novel approach to localization by using search space reduction on global features, then HMM based position prediction and estimation on local features. Experimental results show that accurate localization is achieved and realtime performance is feasible. This work demonstrates that a working portable system could be designed for the visually impaired.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010