By Topic

Stable control of a simulated one-legged running robot with hip and leg compliance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Ahmadi ; Dept. of Mech. Eng., McGill Univ., Montreal, Que., Canada ; M. Buehler

We present a control strategy for a simplified model of a one-legged running robot which features compliant elements in series with hip and leg actuators. For this model, proper spring selection and initial conditions result in “passive dynamic” operation close to the desired motion, without any actuation. However, this motion is not stable. Our controller is based on online calculations of the desired passive dynamic motion which is then parametrized in terms of a normalized “locomotion time”. We show in simulation that the proposed controller stabilizes a wide range of velocities and is robust to modeling errors. It also tracks changes in desired robot velocity and remains largely passive despite a fixed set of springs, masses, and inertias. Comparisons of simulated runs with direct hip actuation show 95% hip actuation energy savings at 3 m/s. Such energy savings are critical for the power autonomy of electrically actuated legged robots

Published in:

IEEE Transactions on Robotics and Automation  (Volume:13 ,  Issue: 1 )