By Topic

Local concept-based medical image retrieval with correlation-enhanced similarity matching based on global analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Md Mahmudur Rahman ; U.S. National Library of Medicine, National Institutes of Health, Bethesda, MD, USA ; Sameer K. Antani ; George R. Thoma

A correlation-enhanced similarity matching framework for medical image retrieval is presented in a local concept-based feature space. In this framework, images are presented by vectors of concepts that comprise of local color and texture patches of image regions in a multi-dimensional feature space. To generate the concept vocabularies and represent the images, statistical models are built using a probabilistic multi-class support vector machine (SVM). For the similarity search, the concept correlations in the collection as a whole are analyzed as a global thesaurus-like structure and incorporated in a similarity matching function. The proposed scheme overcomes some limitations of the “bag of concepts” model, such as the assumption of feature independence. A systematic evaluation of image retrieval on a biomedical image collection of different modalities demonstrates the advantages of the proposed retrieval framework in terms of precision-recall.

Published in:

2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops

Date of Conference:

13-18 June 2010