System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A supervised clustering approach for extracting predictive information from brain activation images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Michel, V. ; Parietal team, INRIA Saclay-Ile-de-France, Saclay, France ; Eger, E. ; Keribin, C. ; Poline, J.-B.
more authors

It is a standard approach to consider that images encode some information such as face expression or biomarkers in medical images; decoding this information is particularly challenging in the case of medical imaging, because the whole image domain has to be considered a priori to avoid biasing image-based prediction and image interpretation. Feature selection is thus needed, but is often performed using mass-univariate procedures, that handle neither the spatial structure of the images, nor the multivariate nature of the signal. Here we propose a solution that computes a reduced set of high-level features which compress the image information while retaining its informative parts: first, we introduce a hierarchical clustering of the research domain that incorporates spatial connectivity constraints and reduces the complexity of the possible spatial configurations to a single tree of nested regions. Then we prune the tree in order to produce a parcellation (division of the image domain) such that parcel-based signal averages optimally predict the target information. We show the power of this approach with respect to reference techniques on simulated data and apply it to enhance the prediction of the subject's behaviour during functional Magnetic Resonance Imaging (fMRI) scanning sessions. Besides its superior performance, the method provides an interpretable weighting of the regions involved in the regression or classification task.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010