By Topic

Facial expressions as feedback cue in human-robot interaction—a comparison between human and automatic recognition performances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lang, C. ; Res. Inst. for Cognition & Robot. (CoR-Lab.), Bielefeld Univ., Bielefeld, Germany ; Wachsmuth, S. ; Wersing, H. ; Hanheide, M.

Facial expressions are one important nonverbal communication cue, as they can provide feedback in conversations between people and also in human-robot interaction. This paper presents an evaluation of three standard pattern recognition techniques (active appearance models, gabor energy filters, and raw images) for facial feedback interpretation in terms of valence (success and failure) and compares the results to the human performance. The used database contains videos of people interacting with a robot by teaching the names of several objects to it. After teaching, the robot should term the objects correctly. The subjects reacted to its answer while showing spontaneous facial expressions, which were classified in this work. One main result is that an automatic classification of facial expressions in terms of valence using simple standard pattern recognition techniques is possible with an accuracy comparable to the average human classification rate, but with a high variance between different subjects, likewise to the human performance.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010