By Topic

Stability effects of finite difference methods on a mathematical tumor growth model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mosayebi, P. ; Univ. of Alberta, Edmonton, AB, Canada ; Cobzas, D. ; Jagersand, M. ; Murtha, A.

Numerical methods used for solving differential equations should be chosen with great care. Not considering numerical aspects such as stability, consistency and wellposed-ness results in erroneous solutions, which in turn will result in incorrect judgments. One of the most important aspects that should be considered is the stability of the numerical method. In this paper, we discuss stability problems of some of the so far proposed finite difference methods for solving the anisotropic diffusion equation, a second order parabolic equation. This equation is used in a variety of applications in physics and image processing. Here, we focus on its usage in formulating brain tumor growth using the Diffusion Weighted Imaging (DWI) technique. Our study shows that the commonly used chain rule method to discretize the diffusion equation is unstable. We propose a new 3D stable discretization method with its stability conditions to solve the diffusion equation. The new method uses directional discretization and forward differences. We also extend standard discretization method to 3D. The theoretical and practical comparisons of the three methods both on synthetic and real patient data show that while chain rule model is always unstable and standard discretization is unstable in theory, our proposed directional discretization is stable both in theory and practice.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference on

Date of Conference:

13-18 June 2010