By Topic

Evidence for the presence of turbulent attenuation on low-elevation angle Earth-space paths. 2. Frequency scaling of scintillation intensity on a 10° path

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. M. R. Jones ; Dept. of Electron. & Electr. Eng., Bradford Univ., UK ; I. A. Glover ; P. A. Watson ; R. G. Howell

For pt.1 see ibid., vol.45, no.1, p.73-84 (1997). This paper presents the results of and conclusions drawn from two experimental studies of low-elevation, slant-path scintillation. Part I related to 11.2-GHz measurements at an elevation angle of 3.3°. Part II describes 14- and 11-GHz observations made on a (nominal) 10° path over a four year period. The resulting time-series data have enabled frequency scaling to be investigated in some depth. Scintillation occurring during periods unassociated with fading is found to be well modeled in its frequency scaling behavior by classical theories of clear air turbulence (CAT). This is not the case, however, for scintillation that occurs during, just before, or just after rain-induced fading. A rapidly fluctuating attenuation mechanism, not separable from CAT-induced scintillation on the basis of its spectrum alone, is thought to be responsible for this anomalous frequency-scaling result

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:45 ,  Issue: 1 )