Cart (Loading....) | Create Account
Close category search window
 

Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Levy, M.F. ; Radio Commun. Res. Unit, Rutherford Appleton Lab., Chilton, UK

Perfectly transparent boundary conditions are derived for truncating the integration domain when solving radiowave propagation problems with a parabolic equation (PE) method. The boundary conditions are nonlocal: they are expressed as a convolution integral involving the field at all previous ranges. The convolution kernel is matched to the refractive index vertical gradient at the boundary. The boundary conditions include an incoming energy term which can model an arbitrary incident field. In particular, they may be used with plane-wave incidence, or with a point-source located below or above the domain boundary. If required, the solution can be extended to heights above the boundary with a generalized horizontal PE method. Closed-form solutions for the incoming energy term are given for plane-wave incidence and for Gaussian sources when the refractive index above the boundary is constant or linear. The resulting finite-difference algorithms provide efficient solutions to problems involving airborne sources. Numerical examples are given, showing excellent agreement with a pure split-step/Fourier PE algorithm

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:45 ,  Issue: 1 )

Date of Publication:

Jan 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.