By Topic

Wireless infrared communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kahn, J.M. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Barry, J.R.

The use of infrared radiation as a medium for high-speed short-range wireless digital communication is discussed. Available infrared links and local-area networks are described. Advantages and drawbacks of the infrared medium are compared to those of radio and microwave media. The physical characteristics of infrared channels using intensity modulation with direct detection (IM/DD) are presented including path losses and multipath responses. Natural and artificial ambient infrared noise sources are characterized. Strategies for designs of transmitter and receivers that maximize link signal-to-noise ratio (SNR) are described. Several modification formats are discussed in detail, including on-off keying (OOK) pulse-position modulation (PPM), and subcarrier modulation. The performance of these techniques in the presence of multipath distortion is quantified. Techniques for multiplexing the transmissions of different users are reviewed. The performance of an experimental 50-Mb/s on-off-keyed diffuse infrared link is described

Published in:

Proceedings of the IEEE  (Volume:85 ,  Issue: 2 )