By Topic

Adaptive color segmentation-a comparison of neural and statistical methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Littmann ; Signal & Image Exploitation Syst., Dornier GmbH, Friedrichshafen, Germany ; H. Ritter

With the availability of more powerful computers it is nowadays possible to perform pixel based operations on real camera images even in the full color space. New adaptive classification tools like neural networks make it possible to develop special-purpose object detectors that can segment arbitrary objects in real images with a complex distribution in the feature space after training with one or several previously labeled image(s). The paper focuses on a detailed comparison of a neural approach based on local linear maps (LLMs) to a classifier based on normal distributions. The proposed adaptive segmentation method uses local color information to estimate the membership probability in the object, respectively, background class. The method is applied to the recognition and localization of human hands in color camera images of complex laboratory scenes

Published in:

IEEE Transactions on Neural Networks  (Volume:8 ,  Issue: 1 )