By Topic

Principal feature classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li, Qi ; Dept. of Electr. & Comput. Eng., Rhode Island Univ., Kingston, RI, USA ; Tufts, D.W.

The concept, structures, and algorithms of principal feature classification (PFC) are presented in this paper. PFC is intended to solve complex classification problems with large data sets. A PFC network is designed by sequentially finding principal features and removing training data which has already been correctly classified. PFC combines advantages of statistical pattern recognition, decision trees, and artificial neural networks (ANNs) and provides fast learning with good performance and a simple network structure. For the real-world applications of this paper, PFC provides better performance than conventional statistical pattern recognition, avoids the long training times of backpropagation and other gradient-descent algorithms for ANNs, and provides a low-complexity structure for realization

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 1 )