Cart (Loading....) | Create Account
Close category search window

Decision boundary feature extraction for neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chulhee Lee ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Landgrebe, D.A.

In this paper, we propose a new feature extraction method for feedforward neural networks. The method is based on the recently published decision boundary feature extraction algorithm which is based on the fact that all the necessary features for classification can be extracted from the decision boundary. The decision boundary feature extraction algorithm can take advantage of characteristics of neural networks which can solve complex problems with arbitrary decision boundaries without assuming underlying probability distribution functions of the data. To apply the decision boundary feature extraction method, we first give a specific definition for the decision boundary in a neural network. Then, we propose a procedure for extracting all the necessary features for classification from the decision boundary. Experiments show promising results

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 1 )

Date of Publication:

Jan 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.