By Topic

On neurobiological, neuro-fuzzy, machine learning, and statistical pattern recognition techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joshi, A. ; Dept. of Comput. Eng. & Comput. Sci., Missouri Univ., Columbia, MO, USA ; Ramakrishman, N. ; Houstis, E.N. ; Rice, J.R.

In this paper, we propose two new neuro-fuzzy schemes, one for classification and one for clustering problems. The classification scheme is based on Simpson's fuzzy min-max method (1992, 1993) and relaxes some assumptions he makes. This enables our scheme to handle mutually nonexclusive classes. The neuro-fuzzy clustering scheme is a multiresolution algorithm that is modeled after the mechanics of human pattern recognition. We also present data from an exhaustive comparison of these techniques with neural, statistical, machine learning, and other traditional approaches to pattern recognition applications. The data sets used for comparisons include those from the machine learning repository at the University of California, Irvine. We find that our proposed schemes compare quite well with the existing techniques, and in addition offer the advantages of one-pass learning and online adaptation

Published in:

Neural Networks, IEEE Transactions on  (Volume:8 ,  Issue: 1 )