By Topic

ASAP: Scalable Identification and Counting for Contactless RFID Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chen Qian ; Dept. of Comput. Sci., Univ. of Texas at Austin, Austin, TX, USA ; Yunhuai Liu ; Hoilun Ngan ; Ni, L.M.

The growing importance of operations such as identification, location sensing and object tracking has led to increasing interests in contact less Radio Frequency Identification (RFID) systems. Enjoying the low cost of RFID tags, modern RFID systems tend to be deployed for large-scale mobile objects. Both the theoretical and experimental results suggest that when tags are mobile and with large numbers, two classical MAC layer collision-arbitration protocols, slotted ALOHA and Tree-traversal, do not satisfy the scalability and time-efficiency requirements of many applications. To address this problem, we propose Adaptively Splitting-based Arbitration Protocol (ASAP), a scheme that provides low-latency RFID identification and has stable performance for massive RFID networks. Theoretical analysis and experimental evaluation show that ASAP outperforms most existing collision-arbitration solutions. ASAP is efficient for both small and large deployment of RFID tags, in terms of time and energy cost. Hence it can benefit dynamic and large-scale RFID systems.

Published in:

Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on

Date of Conference:

21-25 June 2010