Cart (Loading....) | Create Account
Close category search window
 

StreamCloud: A Large Scale Data Streaming System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gulisano, V. ; Fac. de Inf., Univ. Politec. de Madrid, Madrid, Spain ; Jimenez-Peris, R. ; Patino-Martinez, M. ; Valduriez, P.

Data streaming has become an important paradigm for the real-time processing of continuous data flows in domains such as finance, telecommunications, networking, Some applications in these domains require to process massive data flows that current technology is unable to manage, that is, streams that, even for a single query operator, require the capacity of potentially many machines. Research efforts on data streaming have mainly focused on scaling in the number of queries or query operators, but overlooked the scalability issue with respect to the stream volume. In this paper, we present StreamCloud a large scale data streaming system for processing large data stream volumes. We focus on how to parallelize continuous queries to obtain a highly scalable data streaming infrastructure. StreamCloud goes beyond the state of the art by using a novel parallelization technique that splits queries into subqueries that are allocated to independent sets of nodes in a way that minimizes the distribution overhead. StreamCloud is implemented as a middleware and is highly independent of the underlying data streaming engine. We explore and evaluate different strategies to parallelize data streaming and tackle with the main bottlenecks and overheads to achieve scalability. The paper presents the system design, implementation and a thorough evaluation of the scalability of the fully implemented system.

Published in:

Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on

Date of Conference:

21-25 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.