By Topic

Reliability Calculus: A Theoretical Framework to Analyze Communication Reliability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wenbo He ; Dept. of Electr. Eng., Univ. of Nebraska-Lincoln, Lincoln, NE, USA ; Xue Liu ; Long Zheng ; Hao Yang

Communication reliability is one of the most important concerns and fundamental issues in network systems, such as cyber-physical systems, where network components, sensors, actuators, controllers are interconnected with each other. These systems are prevalent in many safety-critical areas, including aerospace, automotive, civil infrastructure, energy, healthcare, manufacturing, and transportation, etc. In such systems, a single link failure, or communication delay could lead to catastrophic consequences. Hence, there is an urgent demand on efficient methodologies to model and analyze the delay distribution of control messages or feedback signals, especially when networks grow more complex and more heterogenous. In this paper, a calculus based on frequency domain analysis is developed to address this goal, so we can model and analyze the reliability of communication in large-scale compositional networked systems. Several network structures (e.g. serial, parallel, circular and backup) are defined as building blocks to model a wide variety of connections in networked systems. The advantages of the proposed theoretical framework over the traditional time-domain approaches include the capability to capture higher order moments of system characteristics, scalability to analyze the reliability of complex systems, efficiency in calculation and practicability in simulation.

Published in:

Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on

Date of Conference:

21-25 June 2010