By Topic

An Energy-Efficient Distributed Algorithm for Minimum-Latency Aggregation Scheduling in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yingshu Li ; Dept. of Comput. Sci., Georgia State Univ., Atlanta, GA, USA ; Longjiang Guo ; Prasad, S.K.

Data aggregation is an essential yet time-consuming task in wireless sensor networks (WSNs). This paper studies the well-known Minimum-Latency Aggregation Schedule (MLAS) problem and proposes an energy-efficient distributed scheduling algorithm named Clu-DDAS based on a novel cluster-based aggregation tree. Our approach differs from all the previous schemes where Connected Dominating Sets or Maximal Independent Sets are employed. We prove that Clu-DDAS has a latency bound of 4R' + 2Delta - 2, where Δ is the maximum degree and R' is the inferior network radius which is smaller than the network radius R. Clu-DDAS has comparable latency as the previously best centralized algorithm E-PAS, while Clu-DDAS consumes 78% less energy as shown by the simulation results. Clu-DDAS outperforms the previously best distributed algorithm DAS whose latency bound is 16R' + Δ - 14 on both latency and energy consumption. On average, Clu-DDAS transmits 67% fewer total messages than DAS does. We also propose an adaptive strategy for updating the schedule to accommodate dynamic network topology.

Published in:

Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on

Date of Conference:

21-25 June 2010