By Topic

Visual, Log-Based Causal Tracing for Performance Debugging of MapReduce Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiaqi Tan ; DSO Nat. Labs., Singapore, Singapore ; Kavulya, S. ; Gandhi, R. ; Narasimhan, P.

The distributed nature and large scale of MapReduce programs and systems poses two challenges in using existing profiling and debugging tools to understand MapReduce programs. Existing tools produce too much information because of the large scale of MapReduce programs, and they do not expose program behaviors in terms of Maps and Reduces. We have developed a novel non-intrusive log-analysis technique which extracts state-machine views of the control- and data-flows in MapReduce behavior from the native logs of Hadoop MapReduce systems, and it synthesizes these views to create a unified, causal view of MapReduce program behavior. This technique enables us to visualize MapReduce programs in terms of MapReduce-specific behaviors, aiding operators in reasoning about and debugging performance problems in MapReduce systems. We validate our technique and visualizations using a realworld workload, showing how to understand the structure and performance behavior of MapReduce jobs, and diagnose injected performance problems reproduced from real-world problems.

Published in:

Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on

Date of Conference:

21-25 June 2010