By Topic

Research paper recommendation with topic analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chenguang Pan ; Comput. Sci. Dept., Peking Univ., Beijing, China ; Wenxin Li

With the collaborative filtering techniques becoming more and more mature, recommender systems are widely used nowadays, especially in electronic commerce and social networks. However, the utilization of recommender system in academic research itself has not received enough attention. A research paper recommender system would greatly help researchers to find the most desirable papers in their fields of endeavor. Due to the textual nature of papers, content information could be integrated into existed recommendation methods. In this paper, we proposed that by using topic model techniques to make topic analysis on research papers, we could introduce a thematic similarity measurement into a modified version of item-based recommendation approach. This novel recommendation method could considerable alleviate the cold start problem in research paper recommendation. Our experiment result shows that our approach could recommend highly relevant research papers.

Published in:

Computer Design and Applications (ICCDA), 2010 International Conference on  (Volume:4 )

Date of Conference:

25-27 June 2010