Cart (Loading....) | Create Account
Close category search window
 

Bandwidth allocation in virtual network based on traffic prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yongtao Wei ; Sch. of Inf. Sci. & Eng., Northeastern Univ., Shenyang, China ; Jinkuan Wang ; Cuirong Wang ; Cong Wang

For future Internet, network virtualization provides the feasibility of running multiple routing architectures on a shared physical infrastructure. This paper presents the design and evaluation of a bandwidth allocation algorithm based on multi-commodity flow problem solver, which integrated with a traffic predictor. The basic idea of our design is that some failure in the MFP computation implies that one or more links do not have enough available capacity, which violates the linear constraints on the commodities for each link when modeling MFP. To avoid producing bottleneck links, we employed traffic predictor. On one hand, MFP solver makes better resource utilization by making use of the thin pieces of available bandwidth, by which the virtual network can accept more service requests. On the other hand, the traffic predictor adjusts the link with the largest occupation (bottleneck link) by checking the traffic rate of a user link and adjusting the reserved bandwidth based on the Forecasting of the traffic history. Then we present the results of performance comparisons of the predictor-integrated algorithm and the allocation algorithm only by Solving MFP. The comparisons are based on the mean packet delay, the variance of the packet delay, and the buffer requirements. Our performance tests show that predictor-integrated algorithm works better than the allocation algorithm only by Solving MFP in terms of the three metrics listed above.

Published in:

Computer Design and Applications (ICCDA), 2010 International Conference on  (Volume:5 )

Date of Conference:

25-27 June 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.