Cart (Loading....) | Create Account
Close category search window
 

Low Complexity Equalization for Doubly Selective Channels Modeled by a Basis Expansion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hrycak, T. ; Fac. of Math., Univ. of Vienna, Vienna, Austria ; Das, S. ; Matz, G. ; Feichtinger, H.G.

We propose a novel equalization method for doubly selective wireless channels, whose taps are represented by an arbitrary Basis Expansion Model (BEM). We view such a channel in the time domain as a sum of product-convolution operators created from the basis functions and the BEM coefficients. Equivalently, a frequency-domain channel can be represented as a sum of convolution-products. The product-convolution representation provides a low-complexity, memory efficient way to apply the channel matrix to a vector. We compute a regularized solution of a linear system involving the channel matrix by means of the GMRES and the LSQR algorithms, which utilize the product-convolution structure without ever explicitly creating the channel matrix. Our method applies to all cyclic-prefix transmissions. In an OFDM transmission with K subcarriers, each iteration of GMRES or LSQR requires only O(K K) flops and O(K) memory. Additionally, we further accelerate convergence of both GMRES and LSQR by using the single-tap equalizer as a preconditioner. We validate our method with numerical simulations of a WiMAX-like system (IEEE 802.16e) in channels with significant delay and Doppler spreads. The proposed equalizer achieves BERs comparable to those of MMSE equalization, and noticeably outperforms low-complexity equalizers using an approximation by a banded matrix in the frequency domain. With preconditioning, the lowest BERs are obtained within 3-16 iterations. Our approach does not use any statistical information about the wireless channel.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.