By Topic

Constructive Approximation to Multivariate Function by Decay RBF Neural Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muzhou Hou ; Sch. of Math. Sci. & Comput. Technol., Central South Univ., Changsha, China ; Xuli Han

It is well known that single hidden layer feedforward networks with radial basis function (RBF) kernels are universal approximators when all the parameters of the networks are obtained through all kinds of algorithms. However, as observed in most neural network implementations, tuning all the parameters of the network may cause learning complicated, poor generalization, overtraining and unstable. Unlike conventional neural network theories, this brief gives a constructive proof for the fact that a decay RBF neural network with n + 1 hidden neurons can interpolate n + 1 multivariate samples with zero error. Then we prove that the given decay RBFs can uniformly approximate any continuous multivariate functions with arbitrary precision without training. The faster convergence and better generalization performance than conventional RBF algorithm, BP algorithm, extreme learning machine and support vector machines are shown by means of two numerical experiments.

Published in:

Neural Networks, IEEE Transactions on  (Volume:21 ,  Issue: 9 )