Cart (Loading....) | Create Account
Close category search window
 

Direct Intermode Selection for H.264 Video Coding Using Phase Correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Paul, M. ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Weisi Lin ; Lau, C.T. ; Bu-Sung Lee

The H.264 video coding standard exhibits higher performance compared to the other existing standards such as H.263, MPEG-X. This improved performance is achieved mainly due to the multiple-mode motion estimation and compensation. Recent research tried to reduce the computational time using the predictive motion estimation, early zero motion vector detection, fast motion estimation, and fast mode decision, etc. These approaches reduce the computational time substantially, at the expense of degrading image quality and/or increase bitrates to a certain extent. In this paper, we use phase correlation to capture the motion information between the current and reference blocks and then devise an algorithm for direct motion estimation mode prediction, without excessive motion estimation. A bigger amount of computational time is reduced by the direct mode decision and exploitation of available motion vector information from phase correlation. The experimental results show that the proposed scheme outperforms the existing relevant fast algorithms, in terms of both operating efficiency and video coding quality. To be more specific, 82 ~ 92% of encoding time is saved compared to the exhaustive mode selection (against 58 ~ 74% in the relevant state-of-the-art), and this is achieved without jeopardizing image quality (in fact, there is some improvement over the exhaustive mode selection at mid to high bit rates) and for a wide range of videos and bitrates (another advantages over the relevant state-of-the-art).

Published in:

Image Processing, IEEE Transactions on  (Volume:20 ,  Issue: 2 )

Date of Publication:

Feb. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.