By Topic

A Multistage Approach to Improve Performance of Computer-Aided Detection of Pulmonary Embolisms Depicted on CT Images: Preliminary Investigation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sang Cheol Park ; Dept. of Radiol., Univ. of Pittsburgh, Pittsburgh, PA, USA ; Chapman, B.E. ; Bin Zheng

This study developed a computer-aided detection (CAD) scheme for pulmonary embolism (PE) detection and investigated several approaches to improve CAD performance. In the study, 20 computed tomography examinations with various lung diseases were selected, which include 44 verified PE lesions. The proposed CAD scheme consists of five basic steps: 1) lung segmentation; 2) PE candidate extraction using an intensity mask and tobogganing region growing; 3) PE candidate feature extraction; 4) false-positive (FP) reduction using an artificial neural network (ANN); and 5) a multifeature-based k-nearest neighbor for positive/negative classification. In this study, we also investigated the following additional methods to improve CAD performance: 1) grouping 2-D detected features into a single 3-D object; 2) selecting features with a genetic algorithm (GA); and 3) limiting the number of allowed suspicious lesions to be cued in one examination. The results showed that 1) CAD scheme using tobogganing, an ANN, and grouping method achieved the maximum detection sensitivity of 79.2%; 2) the maximum scoring method achieved the superior performance over other scoring fusion methods; 3) GA was able to delete “redundant” features and further improve CAD performance; and 4) limiting the maximum number of cued lesions in an examination reduced FP rate by 5.3 times. Combining these approaches, CAD scheme achieved 63.2% detection sensitivity with 18.4 FP lesions per examination. The study suggested that performance of CAD schemes for PE detection depends on many factors that include 1) optimizing the 2-D region grouping and scoring methods; 2) selecting the optimal feature set; and 3) limiting the number of allowed cueing lesions per examination.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:58 ,  Issue: 6 )