Cart (Loading....) | Create Account
Close category search window
 

Optimal Residential Load Control With Price Prediction in Real-Time Electricity Pricing Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mohsenian-Rad, A.-H. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON, Canada ; Leon-Garcia, A.

Real-time electricity pricing models can potentially lead to economic and environmental advantages compared to the current common flat rates. In particular, they can provide end users with the opportunity to reduce their electricity expenditures by responding to pricing that varies with different times of the day. However, recent studies have revealed that the lack of knowledge among users about how to respond to time-varying prices as well as the lack of effective building automation systems are two major barriers for fully utilizing the potential benefits of real-time pricing tariffs. We tackle these problems by proposing an optimal and automatic residential energy consumption scheduling framework which attempts to achieve a desired trade-off between minimizing the electricity payment and minimizing the waiting time for the operation of each appliance in household in presence of a real-time pricing tariff combined with inclining block rates. Our design requires minimum effort from the users and is based on simple linear programming computations. Moreover, we argue that any residential load control strategy in real-time electricity pricing environments requires price prediction capabilities. This is particularly true if the utility companies provide price information only one or two hours ahead of time. By applying a simple and efficient weighted average price prediction filter to the actual hourly-based price values used by the Illinois Power Company from January 2007 to December 2009, we obtain the optimal choices of the coefficients for each day of the week to be used by the price predictor filter. Simulation results show that the combination of the proposed energy consumption scheduling design and the price predictor filter leads to significant reduction not only in users' payments but also in the resulting peak-to-average ratio in load demand for various load scenarios. Therefore, th- - e deployment of the proposed optimal energy consumption scheduling schemes is beneficial for both end users and utility companies.

Published in:

Smart Grid, IEEE Transactions on  (Volume:1 ,  Issue: 2 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.