Cart (Loading....) | Create Account
Close category search window
 

Generalized Miniaturization Method for Coupled-Line Bandpass Filters by Reactive Loading

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seungku Lee ; Dept. of Electr. & Electron. Eng., Yonsei Univ., Seoul, South Korea ; Yongshik Lee

This paper presents a generalized miniaturization method for coupled-line bandpass filters by reactive loading, including the series-inductive loading method that is proposed in this work. It is shown that bandwidth reduction seen in the previous miniaturization method of shunt-capacitive loading is a special case. In fact, one can choose a coupled-line filter to be miniaturized with its bandwidth reduced, expanded, or maintained after miniaturization. The ratio of the bandwidths before and after miniaturization plays an important role in determining the even-/odd-mode impedance, as well as the reactance levels after miniaturization. Therefore, the freedom in choosing the bandwidth ratio provides a great flexibility in miniaturizing coupled-line filters since one can choose an appropriate bandwidth ratio to maintain the impedance and reactance at practical levels after miniaturization. The proposed generalized miniaturization method enables filter designs focused on size reduction, improved stopband response, low-cost fabrication, or a combination of these, which are verified by experimental results.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 9 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.