By Topic

Development and Application of Multi-Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jean-Fran├žois Pekel ; Departement of Environmental Science, Univesité catholique de Louvain, Louvain la Neuve, Belgium ; Pietro Ceccato ; Christelle Vancutsem ; Keith Cressman
more authors

The Desert Locust (Schistocerca gregaria) is the most feared of all the locusts worldwide. Satellite imagery can provide a continuous overview of ecological conditions (i.e., vegetation, soil moisture) suitable for the Desert Locust at the continental scale and in near real time. To monitor green vegetation, most remote sensing techniques are based on vegetation indices (e.g., NDVI). However, several limitations have been observed for this index based approaches in sparsely vegetated areas. To guarantee a more robust and reliable image-independent discrimination between vegetation and non-vegetated surface types, an innovative multi-temporal and multi-spectral image analysis method was developed based on a combination of MIR, NIR and Red reflectance measurements. The proposed approach is based on a transformation of the RGB color space into HSV that decouples chromaticity and luminance. A complete automatic processing chain combining the daily observations of MODIS and SPOT VEGETATION, was designed to provide user-friendly vegetation dynamic maps at 250 m resolution over the entire locust area every 10 days. This new product informs users about the location of green vegetation and its temporal evolution. The methodology is currently implemented at the Vlaamse instelling voor technologisch onderzoek (VITO) to provide vegetation dynamic maps every dekade to the Desert Locust Information Service at FAO.

Published in:

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing  (Volume:4 ,  Issue: 2 )