By Topic

Modeling mutual context of object and human pose in human-object interaction activities

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bangpeng Yao ; Computer Science Department, Stanford University, USA ; Li Fei-Fei

Detecting objects in cluttered scenes and estimating articulated human body parts are two challenging problems in computer vision. The difficulty is particularly pronounced in activities involving human-object interactions (e.g. playing tennis), where the relevant object tends to be small or only partially visible, and the human body parts are often self-occluded. We observe, however, that objects and human poses can serve as mutual context to each other - recognizing one facilitates the recognition of the other. In this paper we propose a new random field model to encode the mutual context of objects and human poses in human-object interaction activities. We then cast the model learning task as a structure learning problem, of which the structural connectivity between the object, the overall human pose, and different body parts are estimated through a structure search approach, and the parameters of the model are estimated by a new max-margin algorithm. On a sports data set of six classes of human-object interactions, we show that our mutual context model significantly outperforms state-of-the-art in detecting very difficult objects and human poses.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010