By Topic

Grouplet: A structured image representation for recognizing human and object interactions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bangpeng Yao ; Computer Science Department, Stanford University, USA ; Li Fei-Fei

Psychologists have proposed that many human-object interaction activities form unique classes of scenes. Recognizing these scenes is important for many social functions. To enable a computer to do this is however a challenging task. Take people-playing-musical-instrument (PPMI) as an example; to distinguish a person playing violin from a person just holding a violin requires subtle distinction of characteristic image features and feature arrangements that differentiate these two scenes. Most of the existing image representation methods are either too coarse (e.g. BoW) or too sparse (e.g. constellation models) for performing this task. In this paper, we propose a new image feature representation called “grouplet”. The grouplet captures the structured information of an image by encoding a number of discriminative visual features and their spatial configurations. Using a dataset of 7 different PPMI activities, we show that grouplets are more effective in classifying and detecting human-object interactions than other state-of-the-art methods. In particular, our method can make a robust distinction between humans playing the instruments and humans co-occurring with the instruments without playing.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on

Date of Conference:

13-18 June 2010